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< Data level 2} Algorithm level2 A& £+ U

Data - level 2HH

« Random resampling
» Random Over-Sampling (ROS)
» Random Under-Sampling (RUS)

 Synthetic sample
» SMOTE
> GAN &2

Algorithm - level 94

Cost-sensitive learning
> Inverse frequency weight
» Square root weight

> Focal loss

Two Stage Training
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Data-level t}

FeH: Random resampling

< Random resampling

Random Over Sampling (ROS)

Class-A Class-B

Random Under Sampling (RUS)

Class-A Class-A Class-B
Resampled Dataset

Class-B
Original Dataset
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Data-level &t: Synthetic sample A4

<+ SMOTE(Synthetic Minority Over-sampling Technique)
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Data-level &t: Synthetic sample A4

<+ SMOTE(Synthetic Minority Over-sampling Technique)
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Data-level &t: Synthetic sample A4

+ GAN 28
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Data-level &t: Synthetic sample A4

% GAN £ Conditional GAN (CGAN)
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Algorithm-level 2&: Cost sensitive learning

% Cost sensitive reweighting
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Algorithm-level 2: Cost sensitive learning

» Focal loss
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Algorithm-level 2: Two Stage Training

“ Two Stage Training

Decoupling Representation and Classifier for Long-Tailed Recognition(ICLR, 2020)
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Algorithm-level 2: Two Stage Training

% Two Stage Training
Decoupling Representation and Classifier for Long-Tailed Recognition(ICLR, 2020)
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Algorithm-level 2: Two Stage Training

% Two Stage Training

R (diie= e

Decoupling Representation and Classifier for Long-Tailed Recognition(ICLR, 2020)
Classifier re-training

> Stage 1: Feature extractor2} Classifierg sHH0f| e& Al7|= End-to-End Training

> Stage 2: Feature extractor

151, Classifier S-28F AHstE

‘“Two Stage Training’ Stage 1
e
Feature SNGAH TN
Extractor VR DN K
Tl
| | |
Feature Extraction Classification

Data Mining X H
o.:\ Quality Analytics @ I'}:Q

22



Algorithm-level 2: Two Stage Training

% Two Stage Training
« Decoupling Representation and Classifier for Long-Tailed Recognition(ICLR, 2020)
«  A|¢t&tE HitH: Classifier re-training
> Stage 1: Feature extractor2} Classifierg sHH0f| e& Al7|= End-to-End Training

> Stage 2: Feature extractor® 22 145t Classifier F 22t aHsts
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Algorithm-level 2: Two Stage Training

< Two Stage Training
« Decoupling Representation and Classifier for Long-Tailed Recognition (ICLR, 2020)
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< Delving into Deep Imbalanced Regression
* ICML Conference Long talkOjlAd 20213 HHE =2
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Delving into Deep Imbalanced Regression

Yuzhe Yang' Kaiwen Zha' Ying-Cong Chen' Hao Wang® Dina Katabi'

Abstract Deep Imbalanced Regression
Rm?l-wurld data often exhibit imbalanced c.1is|:|.'i- g N | iribetio
butions, where certain target values have signif- B :
icantly fewer observations. Existing technigues = !
for dealing with imbalanced data focus on tar- " H
gets with categorical indices, ie., different classes. E’
However, many tasks involve continuous targets, 3
where hard boundaries between classes do not A i |I l |h
exist We define Deep Imbalanced Regression el =
(DIR) as learning from such imbalanced data with - - >
continuous ta.rgegts. dealing with polential missing Continuous target value y
data for certain target values, and generalizing to Figure I. Deep Imbalanced Regression (DIR) aims to learn from

imbalanced data with continuous targets, tackle potential mizsing

the entire target range. Motivated by the intrinsic
g b}l data for certain regions, and generalize to the entire target range.

difference between calegorical and continuous la-
bel space, we propose distribution smoothing for

both labels and features, which explicitly acknowl- Existing solutions for leaming from imbalanced data, how-
edges the effects of nearby targets, and calibrates ever, focus on targets with categorical indices, i.e.. the tar-
both label and learned feature distributions. We gets are different classes. However, many real-world tasks
curate and benchmark large-scale DIR datasets involve continuous and even infinite target values. For ex-
from common real-world tasks in computer vi- E_JTIPIB, in vision flpplisﬂﬂm"l!, one needs to infer the age of
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< Label Distribution Smoothing (LDS)

*  Motivation: A% H|O|E{ Q| sh& AXl=H
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< Label Distribution Smoothing(LDS)
 Motivation: 35 H|0|E{2] ot&
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% Label Distribution Smoothing(LDS)
« Motivation: 9£ 4|0|E{2| st&
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% Label Distribution Smoothing(LDS)

- AEE= Y HE EES
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< Label Distribution Smoothing (LDS)
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Empirical label density

P(y) */7 /\ p(y)
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% Label Distribution Smoothing(LDS)
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< Feature Distribution Smoothing (FDS)
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< Feature Distribution Smoothing (FDS)

* Motivation: E}Z! SZHj| M| ALH2 & shgEl REO| EAS 70| = HHH &
- 85 feature space (2) & S8l ZE po| B, BAHS ALt £ US

Feature statistics

z;: feature element
Np: total number of samples in b-th bin

ResNet-50
N backbone

b

1 «
Hp = —z Zj
Ny i=1
linear
regressor
Ly = —tp) (zi—tp) "

N
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< Feature Distribution Smoothing (FDS)
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< Feature Distribution Smoothing (FDS)
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< Feature Distribution Smoothing (FDS)
- EA3Z7tzCH20 calibration 2|0|01E
o

=
-+ S Ol =2 SAIFE F5H7| Slofl ZHIH

T

Z; = encoder (xi) @ Statistics

Z

715104 FDSE 21

GO0 E YA S HE

4 0 (u) + (0~

EMA across epoch

” H I p’b Zk(Jh Uh ﬁﬂ D l

Hy—1 Hy i Hyp—1 Hy By

Calibration <

7w

reg ression@

,C (y ) y) (e+1)

EMA across epoch /\
l..” ” I..O I \...” ” I..l

¥, = S k(yp,yp )y H WK
Y1 X Xy Xpo1 Xy Xy

| |

— a (Zlge)) + (1 —a)X,

Data Mining e, H
o.:\ Quality Analytics h:'a

45



% S0 H|0|E{E AHE|5H| floH &5, 0| EjAT 2 L ESH H 5SS Al 2

< O|OJE] | 2ItH: Random resampling, Synthetic sample &

o OE|'_TI_ El

N
Ief

| BiEH: Cost sensitive learning, Two stage training, LDS, FDS

% BIOJE] HEfO| (2 SRS Tf5t0f 27

—

02

<+ HORL: ASH HO[E], AIAIE HIO[E{0] CHer H+17}F 2Eo| ZIMEIZ

lOII

|2k

1

Data Mining - H
o.:\ Quality Analytics ma



Sk

< Chawla, Nitesh V., et al. "'SMOTE: synthetic minority over-sampling technique.” Journal of artificial
intelligence research 16 (2002): 321-357

< Lin, Tsung-Yi, et al. "Focal loss for dense object detection.” Proceedings of the IEEE international
conference on computer vision. 2017..

< Kang, Bingyi, et al. "Decoupling representation and classifier for long-tailed recognition.” arXiv preprint
arXiv:1910.09217 (2019).

< Yang, Yuzhe, et al. "Delving into Deep Imbalanced Regression.” arXiv preprint arXiv:2102.09554 (2021).
< https://github.com/YyzHarry/imbalanced-regression

< https://towardsdatascience.com/strategies-and-tactics-for-regression-on-imbalanced-data-
61eeb0921fca

< https://www.youtube.com/watch? v=Vhwz228Vrlk &t=1277s

Data Mining H
o.:\ Quality Analytics "\:a 47



Thank you

Data Min ; s
‘:\QTnyA alytics bt I"}'ZQ



